首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770206篇
  免费   93156篇
  国内免费   294篇
  863656篇
  2016年   8516篇
  2015年   11853篇
  2014年   14062篇
  2013年   20149篇
  2012年   22271篇
  2011年   22594篇
  2010年   15062篇
  2009年   14006篇
  2008年   19995篇
  2007年   21123篇
  2006年   19659篇
  2005年   19135篇
  2004年   19115篇
  2003年   18439篇
  2002年   17924篇
  2001年   32694篇
  2000年   33113篇
  1999年   26657篇
  1998年   9690篇
  1997年   10103篇
  1996年   9683篇
  1995年   9371篇
  1994年   9375篇
  1993年   9178篇
  1992年   23202篇
  1991年   22806篇
  1990年   22434篇
  1989年   21690篇
  1988年   20392篇
  1987年   19475篇
  1986年   18176篇
  1985年   18419篇
  1984年   15368篇
  1983年   13544篇
  1982年   10573篇
  1981年   9729篇
  1980年   9190篇
  1979年   15458篇
  1978年   11915篇
  1977年   11035篇
  1976年   10458篇
  1975年   11512篇
  1974年   12170篇
  1973年   12123篇
  1972年   11325篇
  1971年   10134篇
  1970年   8763篇
  1969年   8377篇
  1968年   7550篇
  1967年   6616篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
A Gram-positive Rhodococcus erythropolis strain S1 was shown to assimilate aromatic amino acids such as L-phenylalanine, L-tyrosine, L-tryptophan, D-phenylalanine, D-tyrosine and D-tryptophan, which were utilized not only as the sole carbon source but also as a suitable nitrogen source. The highest growth on these aromatic amino acids occurred at a temperature of 30°C. L-Phenylalanine, L-tyrosine and L-tryptophan degradative pathways would appear to be independent, and to be induced alternatively. The strain S1 also showed the ability to assimilate peptides which consisted of only L-phenylalanine and L-tyrosine.  相似文献   
993.
Macrophage catabolism of lipid A is regulated by endotoxin stimulation   总被引:1,自引:0,他引:1  
Lipopolysaccharide (LPS) is a Gram-negative bacterial glycolipid that is believed to cause, by virtue of its stimulatory actions on macrophages and other eukaryotic cells, the life-threatening symptoms associated with Gram-negative infections. Macrophages both respond to and catabolically deactivate LPS. The lipid A moiety of LPS is responsible for the stimulatory actions of LPS on macrophages. We have previously developed methods employing a radiolabeled bioactive lipid A precursor, 4'-32P-lipid IVA, to study the interaction of this class of lipids with animal cells (Hampton, R. Y., Golenbock, D. T., and Raetz, C. R. H. (1988). J. Biol. Chem. 263, 14802-14807). In the current work, we have examined the uptake and catabolism of 4'-32P-lipid IVA by the RAW 264.7 cell line in serum-containing medium at physiological temperatures and have studied the effect of LPS stimulation on the ability of these cells to catabolize lipid IVA. RAW 264.7 macrophage-like cells avidly take up 4'-32P-lipid IVA under cell culture conditions at nanomolar concentrations. Uptake of lipid IVA was accompanied by lysosomal dephosphorylation of a fraction of the lipid to yield 4'-monophosphoryl lipid IVA. Chemically generated 4'-monophosphoryl lipid IVA was found to be substantially less bioactive than lipid IVA in the RAW cell, indicating that this catabolic dephosphorylation results in detoxification. In uptake experiments of 3-4 h duration, all metabolism of lipid IVA is blocked by ligands of the macrophage scavenger receptor. In longer experiments (24 h), both scavenger receptor-dependent and -independent uptake are responsible for the lysosomal catabolism of lipid IVA. Preincubation of RAW 264.7 cells with LPS caused dose-dependent inhibition of lipid IVA dephosphorylation. Sufficient LPS stimulation resulted in essentially complete inhibition of lipid IVA catabolism in both short- and long-term uptake experiments. This effect occurred at physiologically relevant concentrations of LPS (IC50 less than 1 ng/ml), and our data indicate that LPS-induced blockade of lipid IVA catabolism was due to the resultant physiological stimulation of the cells, and not inhibition of dephosphorylation by competition for uptake or enzymatic sites or by simple sequestration of labeled lipid IVA by LPS aggregates. We suggest that in the macrophage, LPS can modulate its own catabolism by virtue of its pharmacological properties. This effect of LPS could play a role in LPS pathophysiology as well as in macrophage biology.  相似文献   
994.
995.
996.
997.
Primary cultures of endometrial glands and stromal cells were labelled with [14C]-arachidonic acid for 4 h before exposure to either the calcium ionophore, A23187 (which activates phospholipase A2 (PLA2) by increasing intracellular calcium concentrations) or sodium fluoride (which activates a G-protein). Calcium ionophore (0.5-50 mumol/l) stimulated a dose- and time-dependent release of arachidonic acid from endometrial glands. Incubation with ionophore (10 mumol/l) for 1 h released 22% of the incorporated arachidonic acid. There was a corresponding decrease in phospholipids and no loss from triglycerides. Stromal cells were unresponsive to ionophore. Fluoride (10 mmol/l) stimulated a release of arachidonic acid from stromal cells and endometrial glands (6.5% of the total arachidonic acid incorporated). In stromal cells, arachidonic acid was released from triglycerides in Day-1 cultures and from phospholipids in Day-2 cultures. In both Day-1 and Day-2 cultures of endometrial glands, arachidonic acid was released from phospholipids, but not from triglycerides. Among the phospholipids, phosphatidylcholine was always the major source of arachidonic acid. Arachidonic acid release from endometrial glands and stromal cells may be mediated by activation of PLA2 (or phospholipase C) via a G-protein, but in glands calcium ionophore may have a direct effect on PLA2. The response to calcium ionophore may reflect the differences in calcium requirements of the two endometrial PLA2 isoenzymes.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号